Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts.

نویسندگان

  • Takeo Yamada
  • Tatsunori Namai
  • Kenji Hata
  • Don N Futaba
  • Kohei Mizuno
  • Jing Fan
  • Masako Yudasaka
  • Motoo Yumura
  • Sumio Iijima
چکیده

We have succeeded in synthesizing vertically aligned doubled-walled carbon nanotube (DWNT) forests with heights of up to 2.2 mm by water-assisted chemical vapour deposition (CVD). We achieved 85% selectivity of DWNTs through a semi-empirical analysis of the relationships between the tube type and mean diameter and between the mean diameter and the film thickness of sputtered Fe, which was used here as a catalyst. Accordingly, catalysts were engineered for optimum DWNT selectivity by precisely controlling the Fe film thickness. The high efficiency of water-assisted CVD enabled the synthesis of nearly catalyst-free DWNT forests with a carbon purity of 99.95%, which could be templated into organized structures from lithographically patterned catalyst islands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests.

Our group recently reproduced the water-assisted growth method, so-called "SuperGrowth", of millimeter-thick single-walled carbon nanotube (SWNT) forests by using C2H4/H2/H2O/Ar reactant gas and Fe/Al2O3, catalyst. In this current work, a parametric study was carried out on both reaction and catalyst conditions. Results revealed that a thin Fe catalyst layer (about 0.5 nm) yielded rapid growth ...

متن کامل

Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes.

We demonstrate the efficient chemical vapor deposition synthesis of single-walled carbon nanotubes where the activity and lifetime of the catalysts are enhanced by water. Water-stimulated enhanced catalytic activity results in massive growth of superdense and vertically aligned nanotube forests with heights up to 2.5 millimeters that can be easily separated from the catalysts, providing nanotub...

متن کامل

Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports.

The growth of semiconducting single-walled carbon nanotubes (s-SWNTs) on flat substrates is essential for the application of SWNTs in electronic and optoelectronic devices. We developed a flexible strategy to selectively grow s-SWNTs on silicon substrates using a ceria-supported iron or cobalt catalysts. Ceria, which stores active oxygen, plays a crucial role in the selective growth process by ...

متن کامل

Comparison between Copper and Iron as Catalyst for Chemical Vapor Deposition of Horizontally Aligned Ultralong Single-Walled Carbon Nanotubes on Silicon Substrates

A careful comparison was performed between Cu and Fe as catalysts for the growth of horizontally aligned ultralong single-walled carbon nanotube (SWNT) arrays on SiOx/Si substrates, and the mechanism of the difference was discussed. Cleaner and straighter SWNTs with smaller diameters and narrower size distribution were obtained using Cu as catalyst. It was also found that the SWNTs always grew ...

متن کامل

Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes on Substrate by Europium Oxide

In this paper, we have demonstrated that europium oxide (Eu(2)O(3)) is a new type of active catalyst for single-walled carbon nanotubes (SWNTs) growth under suitable conditions. Both random SWNT networks and horizontally aligned SWNT arrays are efficiently grown on silicon wafers. The density of the SWNT arrays can be altered by the CVD conditions. This result further provides the experimental ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 1 2  شماره 

صفحات  -

تاریخ انتشار 2006